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Motivation
Addressing bias in decisions made by ML screening models (hiring/finance etc.).
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Applicants

How do we ensure the decisions satisfy fairness criteria at all time steps?

Post-Processing Algorithms For ML Fairness
Learmed classifier post-processed offline <> Derived classifier is deployed. [Hardt
etal. 2016]

Our experiments demonstrate that batch post-processing approaches are insufficient to
mitigate fairness violations in the online setting.

Fair Online Post-Processing
a) Overnide classifier's decisions at deployment time; mitigate issues on the fly.
b) Sequential decision-making for continuous monitoring and audit.
¢) Satisfy predefined fairness criteria at all time steps while maximizing long-
term utility: constrained optimization problem.
Algorithmic Policies
Decide at each time step, whether to override classifier's decisions.
a) Deterministic greedy (gbf).
b} Randomized (rpo, rpo-fl).
¢) Leamed using imitation learning and learning to search (i, I2s).

Learning A Policy (12s) With LOLS Variation [Chang et al. 2015]
Trained (offline) using a sequence of cost-sensitive examples. a)
a) State at t: statistics on data up to t, decisions up to t-1.
b) Label: max utility roll-out (accept/reject at t and reference policy afterwards). c)
c) Weight: difference between the two roll-out utilities.

Fairness Constraints

Can be general (predefined) group fairness constraints.
Demographic parnity constraint in experiments.

Experiments And Results
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Cumulative utility (higher is better) for different
policies (synthetic data, 500 time steps). Unfair:
classifier without post-processing (max possible
utility). Learned policies (I2s, il) consistently
outperform the rest in terms of both utility
and fairness (across datasets).
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Analyzing 125 decisions: fairness audit score vs.
classifier scores. Colors: two classes, circles:
accept, ¥'s: reject. Learned policies trigger
failsafe the least, operate further from the
audit threshold and are able to learn soft
thresholds for accepting per class (vs. gbf).

Our work on generalization of online post-processing to ranking models [Gupta et al. WSDM 2021].



