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ABSTRACT

Vaccines have had a marked impact on public health, in some cases
eradicating previously common debilitating or deadly diseases, such
as polio. However, designing vaccines is a laborious processes, in-
volving extensive and expensive experimentation, and a great deal
of trial and error. Computational vaccine design promises to be
game changing in this regard. Such design commonly involves two
steps: computational design of antibodies, followed by computa-
tional design of a vaccine molecule which would promote genera-
tion of such antibodies. We focus on the first step of this pipeline:
antibody design.

An important challenge in modern antibody design is the possi-
bility of rapid viral mutations which escape antibody binding, as is
the case with HIV and influenza. Indeed, in both these cases, evolu-
tion of the viral antigen has thus far foiled attempts at designing
an effective long-term vaccine. A common way aimed at capturing
viral evolution is to use a fixed panel of known viral variants, with
the goal of designing a broadly binding antibody (i.e., one which
binds most, or all of these). We propose a novel game theoretic
approach to this problem, which allows us to capture not merely
a fixed panel of viral variants, but also a combinatorial space of
mutations from these. Our approach combines learning a linear
approximation of binding stability energy of the antibody-virus
complex with bi-level integer linear programming, which we trans-
form into a single-level mixed-integer linear program. Through a
series of simulation experiments we demonstrate the efficacy of
our proposed approach.
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1 INTRODUCTION

Infectious diseases pose a major threat to public health. In 2016,
about 36.7 million people were living with HIV, and it resulted in
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1 million deaths [14]. From the time AIDS was identified, it has
caused an estimated 35 million deaths worldwide [20]. A recent
Ebola outbreak in Africa killed thousands [3], and annual influenza
outbreaks affect millions, with hundreds of thousands hospitalized,
and thousands dying from the influenza or its side-effects [4].

Vaccination therapies are among the most important methods
for combating infectious diseases. Vaccines are external substances
that stimulate the immune system to produce antibodies that bind
to the vaccine substance. As antibodies develop in response to a
vaccine against a particular pathogen, they remain in the individ-
ual’s bloodstream and rapidly neutralize and clear the pathogen
if the individual is ever infected, thereby preventing illness. Tradi-
tional vaccine design involves laborious and costly lab work aimed
at finding just the right substance which would successfully and
reliably elicit antibodies binding the target pathogen. Recently, a
promising approach has been taking shape in which vaccines are
designed computationally, making use of modern computational
protein modeling tools, such as ROSETTA [1]. One of the common
approaches involves two steps: first, finding an antibody with de-
sired neutralization characteristics, and second, finding a vaccine
which binds tightly to the desired antibody, thereby eliciting the
associated target immune response. We focus on the first step of
computational antibody design.

The central goal in computational antibody design is to find an
antibody protein sequence which neutralizes the target pathogen.
In order for the antibody to neutralize a pathogen, it needs to bind
to it; the specific position at which the two typically bind is called
the binding site. When two proteins (such as an antibody and vi-
ral proteins) bind, they form a complex, which is a configuration
minimizing the total energy of the two molecules. Binding is typi-
cally highly specific: a small change in the sequence can destabilize
binding.

However, binding a single fixed antigen (portion of the pathogen
which typically interacts with the antibody) is often insufficient:
for example, viruses such as HIV and flu have many strains, and an
antibody which neutralizes one will often fail to neutralize another.
An area of active research in antibody design (computational and
otherwise), therefore, is to develop and characterize broadly binding
antibodies, that is, antibodies which effectively bind to (and, ide-
ally, neutralize) many variants of the pathogen [10]. Nevertheless,
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as a pathogen evolves, it may well still escape neutralization; for
example, HIV has an extremely high mutation rate [8].

We propose a radically different approach for computational anti-
body design in the context of rapidly mutating viruses: using a game
theoretic (Stackelberg game) model for the interaction between the
antibody and the virus. In this game, the antibody designer chooses
an antibody sequence, while the virus aims to maximally destabi-
lize binding to the resulting antibody, subject to a constraint on
the number of mutations (this constraint captures the fact that
such a mutation has to be sufficiently likely). This game can be
formulated as a bi-level optimization problem; unfortunately, such
a formulation is quite intractable. We address tractability in three
steps: first, we learn a linear approximation of the antibody-virus
binding score as a function of its sequence (including all pairwise
interactions at the binding site); second, we formulate the optimal
virus escape problem as an integer linear program; and third, after
relaxing the integrality constraint in the virus escape program and
taking its dual, we formulate the antibody design bi-level prob-
lem as a mixed-integer linear program. Our experimental results
demonstrate that our approach is extremely effective against two
recent prior approaches for HIV antibody design.

2 RELATED WORK

Conceptually, our work follows the research on game theoretic an-
tibody design in [15, 16], which extends the insights of Stackelberg
security games [11] to the vaccine design domain. This previous
game-theoretic approach has a fundamental limitation as it relies
on local search approaches. Typically, it is extremely challenging
to compute an optimal solution to bi-level problems with integer
variables. The most important contribution in this paper is that
the compact formulation allows us to compute the optimal global
solution. Additionally, our model incorporates both binding and
stability energies that are critically important factors in protein
sequence design. Since antibodies are protein sequences, our work
relates significantly to computational protein design. Recent ad-
vances involve multi-specificity design to achieve protein design
with respect to more than one targets [18]. The most relevant prior
work is Breadth Optimization in Antibody Design (BROAD) that
incorporates machine learning and sequence optimization for effi-
cient sampling in the sequence space [19]. However, while BROAD
maximizes breadth over an existing virus panel, our approach of
game-theoretic antibody design goes significantly further as the
designed antibody continues to bind against virus escape mutations.
There have been numerous efforts in learning protein structure,
function and interactions from sequence data, of which Kamisetty et
al. [12] is the most relevant to our effort. More remotely related work
include game theoretic models of vaccination decisions [2, 5, 13].
However, these model human decisions about being vaccinated,
whereas our model involves molecular-level interactions between
immunity and pathogen.

3 A GAME THEORETIC MODEL OF
ANTIBODY DESIGN
We define an antibody or virus primary sequence as a sequence

(vector) of amino acids as in previous work [16]. Let ¢ denote the
native virus (the initial virus strain before mutations) and (a, v) be

arbitrary antibody and virus sequences respectively. Let B(a, v) and
S(a, v) denote the binding energy and the thermodynamic stability
scores of the antibody-virus complex. A combination of these is
used as the overall energy score (often known as the z-score) of
the complex, which is what we actually work with, and denote
by Z(a, v). Also, lower (more negative) scores indicate stronger
binding and stability of the antibody-virus complex.

The virus sequence attempts to escape binding to the antibody
by making a series of mutations. We can represent the number of
mutations in a mutated virus sequence v from the native c as ||v —
cllo, where the Iy norm computes the number of sequence positions
in v that are different from c. Given an antibody a, we model the
virus as making up to « mutations with the goal of maximizing
its binding energy score so as to destabilize binding. This model is
motivated by natural selection: viral proteins which tightly bind to
an antibody will be cleared by the immune system, leaving those
which do not, and the remaining viral variants, mutating from a
native sequence, will thereby increase in relative prevalence.

In general, there are many potential virus variants that can in-
fect an individual. To capture this, we consider T virus sequences
of different types ¢t in a virus panel, each starting from a native
sequence ¢! and making mutations to escape binding to a.

We can formally represent the optimization problem being solved
by a collection of viruses as follows:

T
maximize Z Z(a,vh)
vieV =

(1)
subject to |[v! — ¢’ |lo = a, Vt.

where V is the space of virus sequences under consideration. The
optimization problem (1) can be viewed as the combined best re-
sponse of the virus panel to a fixed antibody a.

The space of feasible virus sequences V can be all possible com-
binations of amino acids in corresponding positions. However, in
practice many such combinations are infeasible in nature, for ex-
ample, because some mutations in specific positions destabilize the
viral protein, or affect function. These considerations are too com-
plex to capture cleanly. As a proxy, we constrain feasible mutations
in each position to those which have been observed in nature (in
that position) sufficiently often. More precisely, we only consider a
mutation in a position i to an amino acid j if p;; > 0, where p;; is
the empirical frequency of the associated position-specific muta-
tion, and 0 an exogenously specified threshold (8 = 0 is a natural
choice, and one we use in the experiments; at this threshold, we
only disallow mutations that have never been observed in nature).

In addition to only allowing mutations which are not too rare in
nature, we impose another natural restriction on V. Specifically,
first-order effects in regard to its antibody binding properties are
determined by the sequence that is a part of the native virus bind-
ing site (i.e., positions on the native virus sequence which are in
contact with the native antibody in the original binding complex).
Therefore, we only consider the problem of virus escape in terms of
binding site mutations. This also allows us to significantly reduce
the dimensionality of the problem in practice.

Now we consider the problem of designing an antibody, a, that
is robust to virus escape, as we have now formally defined using
the optimization problem (1). The antibody designer’s decision
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problem is then to choose an antibody which minimizes the energy
scores (strengthens binding and stability) with respect to the virus
panel {1,...,T}, accounting for potential mutations of each virus
in response. This gives rise to the following bi-level optimization
problem for antibody design:

T
min max ZZ(a, vh)
acAvieV =

@)

subject to ||v! — ¢y = a, Vi

where A is the antibody design space, which we restrict to the
native binding site for the same reasons as for the virus. Observe
that the antibody-virus interaction in our model can be viewed as a
Stackelberg game in which the designer (antibody) is the leader, and
each virus is the follower, who chooses an alternative virus sequence
in response to the antibody chosen by the designer. Moreover,
this game is zero-sum: the designer minimizes the energy score, a
quantity which is maximized by each virus ¢.

4 SOLUTION APPROACH

4.1 A Bi-Linear Representation of Energy
Scores

The optimization problem (2) is intractable in general, even when
simulated using the ROSETTA software. In particular, computing
such a function using ROSETTA even for a given pair of sequences
requires many runs of stochastic local search, and takes on the
order of minutes or hours. We make progress by approximating
the complex black-box ROSETTA energy function Z(a, v) by a bi-
linear function of the antibody and virus sequences, similar to the
approach proposed by Kamisetty et al. [12]. The model is based on
an assumption that the binding and stability of an antibody-virus
complex is primarily determined by two factors: a) the individual
amino acids in each binding position of the antibody and the virus
respectively, and b) the effects of the pairwise amino acid interac-
tions between the antibody and the virus. We now describe this
model in detail.

We represent an antibody sequence a as a binary position by
amino-acid matrix, with a;; = 1 iff amino acid j appears in position
i, and a;; = 0 otherwise. Thus, Zj ajj = 1, since exactly 1 amino
acid can be in a given position. Similarly, the virus protein sequence
is represented as a binary matrix v;; which is 1 iff amino acid j is in
position i. Let N, and N, denote the number of binding positions
on the antibody and the virus respectively, and let M = 20 denote
the number of amino acids.

Amino acid contributions to the energy score can be modeled as
a bipartite graph in which nodes represent the amino acids and the
edges represent the pairwise amino acid interactions. Each antibody
position node i has an associated weight vector x; € RM. Similarly,
each virus position node j has an associated weight vector y; € RM.,

The edge (i, j) between antibody position node i and virus po-
sition node j has an associated weight matrix Q;; € RMXM
represent the position specific contribution to the energy score for
each amino acid pair. Consequently, given a and v, the energy score
varies as the sum of individual amino acids and pairwise interaction
effects. Given this setting, the z-score for a given pair a and v is
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defined as:

N, M N, M
Z(a,v) = Z Z xijaij + Z Z Yijvij

i=1 j=1 i=1 j=1
N. N, ®3)
+ZZZ Z akuqkl U +1
=11=1u=1m=

where I is the intercept term and q ™ represents Qy;(u, m).

Our bi-linear model thus has four sets of parameters: x;, yj, and
Q;j for all pairs of antibody and virus positions, i and j, respectively,
and the intercept I. We learn these parameters by generating a
dataset of ROSETTA energy function values for a number of pairs of
antibody and virus sequences (as detailed in the experiments).

Armed with the bi-linear model described in this section, we can
convert the hard bilevel optimization problem into a significantly
more tractable mixed-integer linear program through a combination
of convex relaxation and duality, as we describe next.

4.2 Integer Linear Program for Virus Escape

Our first step is to formulate the virus optimal escape problem as
an integer linear program.

We start by observing that the number of mutations a can be
computed using a dot product with the sequence representation
described above. Specifically, v* =Ny andv! - ¢! = N, — a.
Moreover, Z(a, v) is now a linear function with the above sequence
representation. These observations allow us to formulate the virus
escape optimization in Equation 1 as an integer linear program
(ILP). Since in this problem the antibody a is fixed, we can group

N M
the model in Equation 3 in terms of the variables vas 3, }, xjja;j+
i=1j=1

21 21 (y,] + Z Z akqu)z),] + I. Thus, the virus escape ILP for
i=1j

a particular natlve virus indexed by ¢ (from a collection of T of
these) can be formulated as follows:

T No M

maXIé’ane Z Z Z (yU
v

tlllj

+TZZanU

i=1j=1

Ng M
ki)t
Z 2 akuqu})v,-j (42)
k=1u=1

M

subject to Z

Jj=1

Ny, — Z vajcfj =a,Vt (4c)

u,?j < L(pij — 0), Vi, j, t (4d)
vfj € {0,1}, Vi, j, ¢t

vfj =1,Vit (4b)

where constraint 4b enforces that the binary variables vit ; at each
antibody binding position should sum to 1, i.e., each position admits

one amino acid. The term Z Z vl.ct
=R Y

the dot product v’ - ¢’. The constraint 4d encodes the constraint
that we only allow mutations at positions to amino acids which

in constraint 4c computes
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have been observed at a frequency p;; > 0 as a linear constraint;
here, L is a large number.

4.3 Mixed Integer Linear Program for
Antibody Design

While we can represent the optimization problem faced by the
virus given a fixed antibody using a linear integer program, our
underlying problem of antibody design is still a bi-level problem.
Such bi-level problems (with integer variables, as in our case) are,
in general, extremely challenging to solve.

At the high level, we propose to leverage the linear structure of
the problem to solve it. First, we relax the integrality constraint of
the inner (virus escape) problem. This yields a linear program, the
dual of which we embed into the outer integer linear program. By
relaxation, combined with strong duality of linear programming,
the resulting mixed-integer linear program minimizes an upper
bound on the z-score objective with respect to optimal virus escape.

We start with the ILP 4 computing the optimal virus escape,
and relax the integrality constraint; that is, we relax the binary vl.tj

variables to be continuous and add the constraints 0 < vitj <1

Next, we show that the resulting relaxed LP has integral optimal
solutions.

The standard form LP {max wls : As = b,s > 0} with inte-
gral right-handside vector b has an integral optimal solution if its
constraint matrix A is totally unimodular, a notion we now define.

Definition 4.1 (Total Unimodularity). A matrix A is totally uni-
modular (TUM) if the determinant of each square submatrix of A is
in {0, 1, —1}. In particular, each entry of A is in {0, 1, —-1}.

THEOREM 4.2 (SUFFICIENT CONDITION). A matrix A is TUM if it
only has at most two non-zero entries 1 or -1 in every column, and
for all columns with two non-zero coefficients, the column sum is 0.

We next use this sufficient condition for TUM to prove that our
LP relaxation yields optimal solutions to the original ILP. This result
allows us to work with the relaxed LP for the virus escape problem.

PROPOSITION 4.3. The LP relaxation of the virus escape ILP 4 has
integer optimal solutions.

ProOF. We first prove that the constraint matrix in the LP relax-
ation is TUM. Consider the LP relaxation with the constraints 4b
and 4c and the non-negative variables. The additional constraints
0< vf ; < lare already enforced using 4b and the fact that all vari-
ables are non-negative. The corresponding constraint matrix has at
most two non- zero elements in any given column corresponding to
the variables v!.. The first non-zero element +1 from the relevant
constraint 4b and the second non-zero element -1 from 4c. There-
fore, using theorem 4.2, the constraint matrix is TUM. Since the
right hand side vector has integer elements, this LP relaxation has
optimal integer solutions. This conclusion continues to hold after
adding the constraints 4d since these only additionally restrict the
variables to be zero under specific conditions. O

We observe that the primal relaxed LP is feasible and bounded,
and, therefore, the dual is also feasible and bounded, and (by strong
duality) has the same solution as the primal. Let the associated
(non-negative) dual variables be denoted by 1//13 for each of the

constraints vitj < 1, and let g{)lt (unrestricted), 7¢ (unrestricted)
and pfj (non-negative) denote the dual variables corresponding to
constraints 4b, 4c, and 4d. Note that all dual variables are continuous.
The dual LP is the given by the following (a is fixed here as in the
primal LP):

rmmrmze - (Ny —a)r* + Z Z Lpij - Q)PU (5a)
i=1 j=1
N, M Na M
IO EEDIPIEY

i=1j=1 i=1 j=1
subject to qﬁf - ﬂtcitj + pfj + ,—tj (5b)

N M )
> (i + ) ) akudls) Vit (50)

k=1u=1
¥, p > 0,1, $ unrestricted variables
Next, we integrate this dual LP into the antibody optimization
problem in Equation 2 to formulate the following mixed integer
linear program (MILP):

Ng

e | 516t - omaont + 3o

i=1 j=1
(6a)
N, M N, M
t
IR EEDIPIET
i=1j=1 i=1 j=1
subject to ¢f - tcitj + pfj + 1,//ltj (6b)
N M
ki .
- Z Z akuqu;- > yij, Vi, j, t (6¢)
k=1u=1
M
Z g, = 1,Vu (6d)
u=1

a,?j € {0,1}, Vi, j, t
Y, p = 0,1, $ unrestricted variables

The variables now include the binary antibody variables a;;, and
the constraints ensure that these sum to 1 at each antibody binding
position, i.e., each position admits one amino acid. An important
observation we can make is that while originally we had bi-linear
terms involving antibody and virus decision variables, these are
decoupled after taking the dual, resulting in solely linear terms.

5 EXPERIMENTS

We denote our proposed antibody design approach as STRONG:
STackelberg game theoretic model for RObust aNtibody desiGn and
compare against the two prior approaches, a) BROAD [19] and b)
the game theoretic approach proposed in [16] (henceforth denoted
as AAMAS2015).

The data comprises the anti-HIV antibody VRC23 [9] (the native
antibody) against a set of 180 diverse HIV gp120 virus sequences
(derived from Chuang et al. [6]). To generate sufficient training
data that consists of antibody and virus sequence pairs and the
associated scores, we make random substitutions in the binding
sites of VRC23 and the set of 180 virus sequences (N, = 27 and
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Ny = 32). Each antibody/virus variant has five randomly selected
amino acid substitutions. All such antibody-virus pairs are subjected
to an energy minimization via the ROSETTA relax protocol (iterative
rounds of side chain repacking and backbone minimization [7],
talaris2013 score function). We generate 50 models of each antibody-
virus pair resulting from the above energy minimization protocol
and choose the lowest scoring model in each case. This allows us to
construct the dataset for our experiments with a total of 7360 such
random antibody-virus combinations (including VRC23 and the 180
virus sequences), and the associated scores. We compute mutation
frequencies (p;; in our terminology) from an exhaustive database of
over 66,000 HIV-1 sequences (from the Los Alamos HIV sequence
database http://www.hiv.lanl.gov/). We set the threshold 6 to be
0, excluding only mutations which are never observed in nature.
Finally, we evaluate the robust antibody sequences generated using
our proposed approach using simulation experiments (and ROSETTA
structure modeling for a subset of experiments because of the high
computational cost).

5.1 Bi-linear Z-score Model

The feature vector f consists of N, X M binary antibody features,
Ny X M binary virus features and N, X Ny, X M X M binary pairwise
interaction features corresponding to x,y and Q respectively. We
use sparse matrices to represent this feature space and use the Lasso
implementation in scikit-learn [17] with [; (sparse) regularization.
To measure the accuracy of predictions, we compute the correlation
coefficient between the ROSETTA computed z-scores and the scores
predicted by regression. We perform a 10-fold cross validation
experiment with 80% of the data for training and 20% for testing.
Based on this parameter tuning, we choose regularization parameter
A = 0.01 with an average correlation of 0.85 between the predicted
and the ROSETTA computed z-scores.

5.2 Comparison against BROAD

BROAD [19] is a state of the art algorithm for antibody design
against a fixed panel of HIV virus variants that involves generating
a large training set of binding and stability scores using ROSETTA,
fitting linear models to predict binding and stability, and solving
an ILP to compute an optimal broadly binding antibody sequence.

We perform the comparison following the experimental work-
flow in BROAD. We construct 50 random subsamples of the full
training data corresponding to T = 100 out of the 180 virus se-
quences We train binding and stability prediction models on this
data and compute the BROAD antibody sequence by solving an
ILP with the T virus sequences in the training subsample. Next, for
each training subsample we learn the bi-linear model in Equation 3
and save the coefficients. Then, we solve the MILP 6 to compute
the corresponding STRONG antibody for a given a. Given this
antibody, we solve ILP 4 to compute T escaping virus sequences
corresponding to each of the T training sequences (native). We use
CPLEX version 12.51 to solve the (mixed) integer linear programs.
Finally, we train a z-score model on the full dataset (T = 180). We
evaluate the BROAD and the STRONG antibody sequences in terms
of the predicted z-score against a) the full 180 virus panel and b) the
100 escaping virus sequences in case of each training subsample.
This procedure is outlined in Algorithm 1. As we show in Figure 1
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Figure 1: Comparison between STRONG and BROAD in
terms of the z-score objective (lower is better): on the full
180 virus panel (left) and the 180 escaping virus set (right).

STRONG is significantly better in minimizing the z-score objective
as compared to BROAD.

Algorithm 1 Generating and evaluating STRONG antibody candi-
dates

for each random training set subsample corresponding to T =
100 virus sequences do

Training Data: $B(a,v), S(a, v), Z(a,v) corresponding to
the T training sequences

Learning: bi-linear model for z-score

Optimization: STRONG antibody < MILP 6 solution, es-
caping set «<— ILP 4 solution

Evaluation: predicted z-score using model trained on the
full dataset, and ROSETTA modeling

Finally, we evaluate in terms of the breadth of binding (fraction
of viruses in the evaluation panel to which the designed antibody
binds) generated using ROSETTA structure modeling. We choose 50
random subsamples of training sets with T = 30 virus sequences.
Based on binding and stability models trained on the full dataset,
we generate the top 10 BROAD candidates. Next, we generate the
STRONG antibody for a randomly chosen top BROAD candidate
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Table 1: ROSETTA structure modeling results: breadth of
binding (%).

Virus Sequences VRC23 BROAD STRONG

for Evaluation

180 HIV panel 53.3 100 96.1
30 Escaping sequences 43.3 86.7 93.3
30 Training sequences 56.7 100 100

using a = 5. We perform ROSETTA structure modeling on these anti-
body candidates (one BROAD and one STRONG candidate) and the
escaping set of 30 virus sequences. For comparison, we also include
the native antibody VRC23. We present the ROSETTA computed
breadth in each case in Table 1. STRONG significantly outperforms
BROAD against the escaping virus panel while it continues to be
effective against the training panel.

5.3 Comparison against AAMAS2015

The game-theoretic antibody design approach in [16] uses machine
learning guided stochastic local search to compute optimal antibod-
ies. Following the biased random approach in the above research,
we generate a set of 350 antibody sequences starting with VRC23.
We compute the corresponding average escape costs (number of
mutations to escape) with greedy local search starting from the 180
virus panel. We train a binary antibody-virus binding prediction
model using an rbf kernel SVM on the full dataset and use this
model in the greedy search to evaluate binding. Next, we learn a
linear regression model to predict this average escape cost as a
function of the antibody sequence. Using these models, we perform
50 independent sequences of local search (400 iterations, random
with native bias [16]) to compute 50 optimal antibody candidates.
For comparison, we generate STRONG antibodies corresponding
to the above 50 antibodies, with « set to the nearest integer escape
cost in MILP 6. Using the z-score model trained on the full dataset,
we evaluate these antibodies in Figure 2, on the full 180 panel and
the escaping set in each case (from ILP 4). Our proposed approach
is significantly better in minimizing the objective (z-score). We also
plot the comparison as a function of the local search iterations and
observe a similar trend in Figure 3. Note that the z-scores increase
with iterations since the average escape cost increases as well.

6 CONCLUSIONS

We proposed an efficient approach for computational antibody de-
sign using a Stackelberg game model for the interaction between
the antibody and the virus. We formulated the game as a bi-level
optimization problem, and proposed a method for solving it by lever-
aging a bi-linear model predicting binding stability as a function of
antibody and virus sequence, combined with integer programming.
We show, in particular, that we can compute optimal virus escape
using an integer linear program the LP relaxed version of which
has integer solutions. Consequently, taking the dual of the associ-
ated relaxed LP we obtain an optimization program which can be
directly embedded in the optimal antibody design problem, so that
the antibody design problem can be solved using mixed-integer

0.0

-0.5

-1.0

Z-score

-1.5

AAMAS2015 STRONG

Z-score

AAMAS2015 STRONG

Figure 2: Comparison between STRONG and AAMAS2015 in
terms of the z-score objective (lower is better): on the full 180
virus panel (left) and the 180 escaping virus set (right).
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Figure 3: Comparison between STRONG and AAMAS2015
in terms of the z-score objective against search iterations
(lower is better): on the full 180 virus panel (left) and the
180 escaping virus set (right).
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linear programming. Our experiments show that our approach sig-
nificantly outperforms both the prior game theoretic alternative,
and a state-of-the-art broadly binding antibody design algorithm.
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