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Abstract

Transformer-based pre-trained models are
known to encode societal biases, not only in
their contextual representations but also in their
downstream predictions when fine-tuned on
task-specific data. We present D-BIAS, an ap-
proach that selectively eliminates stereotypical
associations (e.g, co-occurrence statistics) at
fine-tuning, such that the model doesn’t learn
to excessively rely on those signals. D-BIAS
attenuates biases from both identity words and
frequently co-occurring proxies, which we se-
lect using pointwise mutual information. We
apply D-BIAS to a) occupation classification,
and b) toxicity classification and find that our
approach substantially reduces downstream bi-
ases (> 60% in toxicity classification for iden-
tities that are most frequently flagged as toxic
on online platforms). In addition, we show
that D-BIAS dramatically improves upon scrub-
bing, i.e., removing only the identity words in
question. We also demonstrate that D-BIAS eas-
ily extends to multiple identities and achieves
competitive performance with two recently pro-
posed debiasing approaches: R-LACE and
INLP.

1 Introduction

One of the most dominant paradigms in natural
language processing is the fine-tuning of large lan-
guage models for downstream tasks (Bommasani
et al., 2021). Transformer-based language mod-
els pre-trained on massive volumes of text achieve
state-of-the-art performance on a wide spectrum of
tasks, when fine-tuned on task-specific data (Rad-
ford et al., 2018; Devlin et al., 2019). A major con-
cern of this paradigm, however, is that pre-trained
models can learn societal biases from both the pre-
training and fine-tuning data. These biases can be
expressed in two ways – in a) the contextualized
representations of the model themselves, i.e., in-
trinsic biases (Nangia et al., 2020; Nadeem et al.,
2021; May et al., 2019; Kurita et al., 2019), and b)

its downstream predictions after fine-tuning, i.e.,
extrinsic or allocational harms (Gehman et al.,
2020; Garimella et al., 2019; Blodgett et al., 2018).

There has been extensive research into mitigat-
ing bias in pre-trained language models (Meade
et al., 2022). Prior work has primarily focused on
debiasing contextual representations upstream, i.e.,
before the pre-trained model is fine-tuned (Liang
et al., 2020; Kaneko and Bollegala, 2021; Ravfo-
gel et al., 2020, 2022). However, recent work on
the bias-transfer hypothesis1 (Steed et al., 2022)
reveals that most of the variation in downstream
biases can be explained by biased associations in
the fine-tuning dataset. This work also shows that
variations in upstream bias have little impact on
downstream disparities. These results emphasize
the importance of debiasing interventions that tar-
get biases2 introduced during fine-tuning from task-
specific data.

However, Steed et al. (2022) also show that
simply scrubbing identity terms 3 from the down-
stream/ fine-tuning data does not work for bias
mitigation. Scrubbing the fine-tuning data is effec-
tive in reducing bias only when the model is not
pre-trained (i.e., a model with randomly initialized
weights). This finding emphasizes that while an in-
tervention targeted at the fine-tuning data is crucial,
pre-training can complicate downstream-focused
debiasing interventions.

We hypothesize that the ineffectiveness of scrub-
bing the fine-tuning data on a pre-trained model
is because pre-trained models are more sensitive
to the bias by proxy problem, at fine-tuning. This
problem arises when words that co-occur with an
identity term function as proxies for that identity
term and therefore, act as an additional source of
bias (De-Arteaga et al., 2019). Typically, a pre-

1The hypothesis that social biases internalized by large
language models during pre-training transfer into harmful
task-specific behavior after fine-tuning

2Referring to statistical associations for social stereotypes
3Words that indicate demographic identities



trained model predicts masked tokens or spans
from their contexts. During pre-training, some-
times an identity term is masked and the model
learns to predict it from any proxy words that hap-
pen to appear in the identity’s context. Similarly,
sometimes an identity word is part of the context
for predicting a masked proxy word. In this way,
we suspect that the pre-training process entangles
identity terms with words that could serve as a
proxy at fine-tuning. In contrast, a model that is
not pre-trained has randomly initialized weights,
and therefore, there is no initial entangling of iden-
tity words with their proxies. This can explain
the effectiveness of simply scrubbing the identity
terms, in the absence of pre-training.

Based on the bias by proxy intuition, to ad-
dress downstream biases, we present Dropout BIas
ASsociations (D-BIAS), an approach which selec-
tively drops out or ignores bias-associated words
and proxies at fine-tuning, in addition to scrub-
bing identity words. Specifically, D-BIAS aims
to identify words, in the vocabulary of the fine-
tuning data, that are most likely to act as proxies
for identity words in the context of a particular
downstream task. We identify such proxies based
on co-occurrence frequencies using pointwise mu-
tual information (Church and Hanks, 1990). Dur-
ing fine-tuning, D-BIAS replaces identity words
and a set of the most relevant proxies with [MASK]
(details in section 2), preventing the model from
relying on bias associations and also preventing
it from inferring those associations from the prox-
ies. As a result, our approach is simple and rela-
tively straightforward to implement. Moreover, it
can readily and effectively be extended to multiple
identity groups.

We experiment with D-BIAS and other varia-
tions of word dropout on two downstream tasks:
(multi-class) occupation classification of online
biographies (De-Arteaga et al., 2019) and toxi-
city classification on Wikipedia Talk Page com-
ments (Dixon et al., 2018). We demonstrate that
our debiasing approaches are consistently effec-
tive in reducing downstream biases compared to
fine-tuning without word dropout. Improvements
are especially dramatic with D-BIAS on toxicity
classification. For certain identity groups that are
more vulnerable to unfair censorship on online
forums, such as gay and homosexual, D-BIAS

reduces classifier false positive rates (FPR) by
> 60% and even improves classification accuracy

in the process. In contrast, scrubbing these identity
terms does not decrease the FPR for these groups.
In occupation classification, all of our proposed
methods outperform two state-of-the-art debiasing
approaches R-LACE (Ravfogel et al., 2022) and
INLP (Ravfogel et al., 2020), in terms of reducing
the true positive rate (TPR) gaps between biogra-
phies of men and women across occupations.

2 Methods

Our hypothesis is centered on addressing proxy
behavior in the downstream data, in order to pre-
vent the model from learning or inferring societal
stereotypes. For a given identity word, we define
proxies as a set of words which frequently co-occur
with the identity word, in the fine-tuning vocabu-
lary. We describe our approach to compute these
proxy words more formally in section 2.1.

Our proposed approach is straightforward and
aims to find sets of the most relevant proxies corre-
sponding to identity words. Accordingly, it consists
of three major components. The first step is to an-
alyze the fine-tuning data to identify proxy words
that are likely to be associated with identity terms.
We describe our approach for identifying proxies
in section 2.1. The second step is to employ word
dropout strategies, building on those word associ-
ations. More precisely, we define word dropout
as replacing a word with the [MASK] token.4 Our
word dropout strategies are based on specific heuris-
tics that utilize information on proxies, to make
decisions on whether a word in the fine-tuning vo-
cabulary should be dropped out. We present these
strategies in section 2.2. The third step is the actual
fine-tuning of the pre-trained model, on a version
of the fine-tuning data in which identity words and
relevant proxies have been dropped out (e.g., using
one of the dropout strategies).

We begin with a description of the downstream
tasks, in order to refer to concrete examples.

Occupation Classification In this task, the goal
is to identify a person’s occupation from their
online biography. We consider the bias-in-bios
(BIOS) data (De-Arteaga et al., 2019), which con-
sists of ∼ 400K online biographies for 28 occupa-
tions, scraped from Common Crawl. De-Arteaga
et al. (2019) and Steed et al. (2022) report that mod-
els trained on this data exhibit disparities in the em-

4We found that there is no significant difference when
replacing with ‘_’ and that [MASK] works better compared to
an [OOV] token.



pirical true positive rates (TPR) within an occupa-
tion, for biographies belonging to men and women.
TPR denotes the likelihood that the classifier cor-
rectly identifies a person’s occupation from their
biography. More specifically, biographies with
she/her pronouns are less frequently classified
as male-dominated professions—such as surgeon
(and vice versa for occupations such as model).
These discrepancies in the model predictions can
lead to allocational harms — e.g., in recruitment
scenarios. We follow prior work and consider bi-
nary gender as the bias-related identity. We refer
to the pronouns used in each biography (each bi-
ography uses either he/him or she/her pronouns)
as the identity words, following De-Arteaga et al.
(2019).

Toxicity Classification The goal of this task is
to identify toxic comments posted on an online
forum. We consider the WIKI dataset which con-
sists of ∼ 128K comments from Wikipedia Talk
Pages (Dixon et al., 2018). Each comment is la-
beled by human raters as Toxic or Not Toxic.5

Dixon et al. (2018) outline ∼ 50 common demo-
graphic identities (Table 4) based on gender, age,
ethnicity, disability status and religion, many of
which have a very skewed representation in the
data (Figure 7). For example, the identity term
gay appears in only 0.5% of all comments, but it
appears in 3% of the comments labeled as Toxic.
Because of the disproportionate number of toxic
examples for comments containing identity words
such as gay, queer or homosexual, these mentions
are more likely to be flagged for toxic content, re-
sulting in discriminatory censorship for comments
that mention these groups. We follow Dixon et al.
(2018); Steed et al. (2022) and consider the empir-
ical false positive rate (FPR) as a measure of the
model’s likelihood to falsely flag a neutral com-
ment as Toxic.

2.1 Identifying Proxies with Mutual
Information

Let A denote the set of identity words in the train-
ing set of the fine-tuning data (we will refer to
this as the training data). In BIOS, A is the set
of pronouns in De-Arteaga et al. (2019) and in
WIKI, A is a set of identity words outlined in Dixon
et al. (2018) (Table 4). To find proxies correspond-

5The authors define a toxic comment as a “rude, disrespect-
ful, or unreasonable comment that is likely to make you leave
a discussion”.

ing to the identity groups, we propose to compute
the point-wise mutual information (PMI) (Church
and Hanks, 1990) between the identity words and
words in the vocabulary of the training data.

The PMI of a pair of outcomes x and y belonging
to discrete random variables X and Y quantifies
the discrepancy between the probability of their
coincidence, given their joint distribution and their
individual distributions, assuming independence:

PMI(x; y) = log
[
p(x, y)/p(x)p(y)

]
For a pair of words, PMI quantifies the likelihood
of their co-occurrence, taking into account the prob-
ability of single occurrences of each. A high PMI
score between two words indicates a high prob-
ability of the words co-occurring together and a
lower probability of either one of those (or both)
occurring singularly. We normalize PMIs to be
∈ [−1,+1], where −1 (in the limit) indicates no co-
occurrence (i.e., for words which never co-occur),
0 indicates independence (i.e., equal chance of co-
occurring or not), and +1 indicates complete co-
occurrence (i.e., for words that always co-occur):

nPMI(x; y) = PMI(x; y)/h(x, y)

where h(x, y) is the joint self-information, esti-
mated as − log p(X = x, Y = y).

To compute a set of proxies for each identity
word, we consider each word w in the vocabulary
of the fine-tuning data, and compute a set of nPMI
scores nPMI(w; a) with each of the identity words
a ∈ A. In case of the BIOS data, we group all
he/his set of pronouns and she/her set of pro-
nouns to compute the co-occurrences and the nPMI
collectively for each group of pronouns.

2.2 Word Dropout Strategies
In this section, based on the nPMI computations,
we outline four heuristics for making word dropout
decisions. In the first two approaches, we con-
sider all words in the vocabulary of the fine-tuning
data as candidates for dropout, as long as these
words co-occur at least once with any of the iden-
tity words. In the next two approaches, we con-
sider word dropout decisions at the document level,
where a document refers to an instance of the fine-
tuning data.

D-BIAS: For each word w in the training data vo-
cabulary, D-BIAS makes dropout decisions based
on its nPMI with each identity word in A. D-BIAS



drops out w if the max of the nPMI scores over
all identity words, i.e., maxa∈A nPMI(w; a) ≥ θ,
where θ is a hyperparameter which we select using
the validation data at fine-tuning.

D-BIAST: This approach is a stochastic variation
of D-BIAS which makes dropout decision for each
word w based on a probability proportional to the
maximum over nPMIs with all identity words. Let
s(w) = maxa∈A nPMI(w; a). Next, let minnPMI
and maxnPMI be the minimum and maximum of the
nPMI scores over the fine-tuning vocabulary. More
formally,

min
nPMI

= min
w∈W,a∈A

nPMI(w; a),

max
nPMI

= max
w∈W,a∈A

nPMI(w; a).

The dropout probability p(w) for each word w is
then computed as:

p(w) =
(
s(w)−min

nPMI

)
/
(
max
nPMI

−min
nPMI

)
.

Next, we propose two approaches for word
dropout at the document level, where a document
is an individual biography in case of BIOS and a
Talk Page comment in WIKI. In these approaches,
a word in a document is considered for dropout if it
has a high nPMI with an identity word mentioned
in that document. For example, in WIKI task, if an
online forum comment mentions gay, we dropout
words that have high nPMIs with gay, within that
comment. The previous two approaches, on the
other hand, dropout all mentions of a word in the
fine-tuning vocabulary, if it has a high nPMI with
any of the 50 identity words.

SENT-K: This approach selects the set of k high-
est nPMI words (with repetition, within a docu-
ment of the training data), for each identity word
mentioned in that document. Here k is a hyperpa-
rameter which we select using the validation set.

SENT-ST: This approach is a stochastic variation
of SENT-K. For any mention of identity word a ∈
A within a document in the training set, it drops
out words w in that document with a probability:

p(w) =
(
nPMI(w; a)−min

nPMI

)
/
(
max
nPMI

−min
nPMI

)
where minnPMI and maxnPMI denote the range of
nPMI scores computed over each word w in that
sentence (with the identity word a).

In each case, we fine-tune the model on a masked
dataset where the identity tokens and the proxies
have been replaced with [MASK] using one of the
dropout strategies.

3 Experiments

3.1 Setup

We experiment with BERT-base-uncased (Devlin
et al., 2019). In each experiment i.e., with or with-
out dropout strategies, we fine-tune BERT for 5
epochs and select the best model based on vali-
dation accuracy.6 For D-BIAS and SENT-K, we
choose hyperparameters θ and k based on accuracy
on the validation set. Recall that for D-BIAS, θ is
a threshold on the nPMI scores, for a word to be
considered for dropout. For SENT-K, k represents
the top k highest nPMI words to dropout within a
document of the fine-tuning data, corresponding to
any identity words in that document. (section 2.2).
We experiment with θ ∈ (0.0, 0.7) for WIKI and
θ ∈ (0.01, 0.9) for BIOS (based on the range of the
nPMIs in each case), and we consider k = 5, 10
and 20 for SENT-K.

Additionally, we test two variations of nPMI
computations. In the first, we compute co-
occurrences within each sentence (using a sentence
tokenizer7). In the second variation, we compute
co-occurrences within each training document (e.g.,
an instance of a biography has 4 sentences on an
average). In each case, we report best results based
on performance on the validation set. We omit stop
words with NLTK and also punctuation from being
considered for dropout (Bird et al., 2009).

We compare our approaches with two state-
of-the-art debiasing approaches: R-LACE and
INLP (Ravfogel et al., 2022, 2020). INLP itera-
tively identifies a linear subspace corresponding
to biases (gender biases) and subtracts projections
in the embedding space. R-LACE formulates this
problem of identifying and subtracting a linear sub-
space such that a linear predictor can not recover
the subtracted subspace. More precisely, it formu-
lates the problem as a constrained, linear minimax
game, and derives a closed-form solution. R-LACE
outperforms INLP in finding a minimal rank bias
subspace.

In addition to the above approaches, we compare
results with the following two baselines:

6On WIKI data, we find similar results with 10, 20 and 30
training epochs

7nltk.sent_tokenize()



Test Acc ↑ TPRgap(RMSE) ↓ ρ TPRgap%F ↓
BERT 86.04 (0.10) 0.145 (0.005) 0.818 (0.005)

D-BIAS 84.40 (0.25) 0.088 (0.006) 0.728 (0.029)

D-BIAST 84.67 (0.24) 0.112 (0.003) 0.738 (0.024)

SENT-K 85.93 (0.06) 0.105 (0.004) 0.719 (0.014)
SENT-ST 85.90 (0.10) 0.101 (0.003) 0.719 (0.022)

UNIFORM 85.36 (0.19) 0.110 (0.006) 0.741 (0.017)

SCRUB 85.90 (0.04) 0.103 (0.003) 0.720 (0.021)

INLP 84.98 (0.06) 0.113 (0.009) 0.797 (0.027)

R-LACE:1 85.09 (0.07) 0.117 (0.011) 0.794 ( 0.025)

R-LACE:100 85.04 (0.09) 0.115 (0.014) 0.792 (0.025)

Table 1: Debiasing Results on BIOS means and variances (in parenthesis) over 5 random initializations. Test Acc
is overall accuracy on the testset (higher is better). TPR gap is the RMSE of the TPR gap across occupations (lower
is better). ρ is correlation between TPR gap in an occupation and % of women in that occupation (lower is better).
Each word dropout strategy outperforms BERT baseline on all three metrics and R-LACE/INLP on two metrics.
D-BIAS achieves the best RMSE TPR gap.

UNIFORM: drops out words throughout the train-
ing vocabulary i.e., uniformly replaces those with
[MASK] with a probability of p = 0.3.

SCRUB: replaces all mentions of identity words
in the training vocabulary with [MASK].

3.2 Results on Occupation Classification
We perform experiments on the scrubbed version
of the data (with names and pronouns replaced with
‘_’).8 Following previous work, we use stratified-
by-occupation splits, with 65% of the biographies
for training, 10% for validation, and 25% for test-
ing, resulting in ∼ 258K/40K/100K biographies
for train, validation and test respectively (De-
Arteaga et al., 2019). We evaluate our approaches
in terms of TPR gap (difference between TPR for
men and women biographies, lower is better) for
each occupation (section 2). A high TPR gap indi-
cates disparities in the model’s ability to correctly
classify biographies of men and women.

We present debiasing results in Table 1. In each
case, we report means and variances (in parenthe-
ses) over 5 random initializations. The first row
presents results using baseline BERT fine-tuned
on the BIOS task without any dropout intervention.
The next four rows show results using our proposed
debiasing approaches. The last five rows present
results on the baseline approaches (including R-
LACE and INLP). The first column reports overall
accuracy on the test set (higher is better). The sec-

8https://github.com/microsoft/biosbias

ond column presents the root mean square error
(RMSE) of the TPR gap across the 28 occupations
(lower is better). In the third column, following
previous work, we compute the correlation ρ be-
tween the TPR gap in a given profession and the
percentage of women in that profession (lower is
better) following Ravfogel et al. (2022). This met-
ric assesses the correlation between disparities in
model predictions and existing disparities in the
data.

In Table 1, each word dropout approach outper-
forms the fine-tuned BERT baseline on all three
evaluation metrics. Moreover, all word dropout
approaches also outperform R-LACE and INLP on
both bias metrics (RMSE TPR gap and correlation).
D-BIAS achieves the lowest (i.e. best) RMSE
TPR gap, while only slightly decreasing classifier
accuracy. SENT-ST achieves the second lowest
RMSE followed by SENT-K. SENT-K outperforms
R-LACE and INLP in terms of all three metrics.
SENT-ST and SENT-K substantially improve the
RMSE, while achieving test accuracies roughly
equivalent to baseline BERT. D-BIAS and SENT-
ST outperform SCRUB in lowering the RMSE. All
word dropout approaches outperform UNIFORM

in lowering RMSE and correlation (D-BIAST has
slightly higher RMSE but the standard deviation is
lower).

In Figure 1, we plot the TPR gap for each occu-
pation, averaged over the 5 random initializations.
D-BIAS clearly stands out, as it addresses the out-
liers (occupations such as model and rapper that
have high TPR gaps). Moreover, it results in more

https://github.com/microsoft/biosbias


Figure 1: Debiasing results on BIOS data as TPR gap (averaged over 5 random initializations) for each occupation.
For each method, red dots represent a strip plot of TPR gap across occupations; corresponding violin plot is in blue.
D-BIAS outperforms other approaches; it decreases TPR gaps and achieves a more even distribution of TPR gaps
across occupations.
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Figure 2: TPR gap (averaged across 5 random initial-
izations) vs. proportion of women across occupations.
The slope indicates correlation (lower is better) between
representation disparities in training data and dispar-
ities in model predictions after fine-tuning. D-BIAS
(blue) decreases correlation from 0.818 in BERT (red)
to 0.728.

equitable TPR gap numbers across occupations,
all of which are closer to 0 relative to TPR gaps
with other approaches. We observe that D-BIAS

substantially reduces the TPR gap across occupa-
tions (e.g. from ∼ 36% to ∼ 12% for model, from
∼ 21% to ∼ 9.5% for pastor).

In Figure 2, we plot the TPR gap in each oc-
cupation vs. the percentage of women in train-
ing data, in that occupation ( ρ in Table 1 corre-

sponds to the correlation between these two vari-
ables). We see that occupations such as dietician,
interior designer and model tend to be dom-
inated by women biographies, whereas surgeon,
rapper and chiropractor are more likely to have
biographies belonging to men. These occupations
with skewed representation in the biographies show
relatively large TPR gaps (corresponding to base-
line BERT in red). The slope (ρ ≈ 0.8 for BERT,
Table 1) indicates that representation disparities
in the fine-tuning data correlate with disparities in
the model predictions. D-BIAS succeeds in reduc-
ing the TPR gap in these occupations. From Table
1, D-BIAS decreases the correlation to ρ ≈ 0.7
whereas, ρ ≈ 0.8 for both R-LACE and INLP.

3.3 Results on Toxicity Classification

Following the set up in Dixon et al. (2018), we
divide the data into ∼ 96K comments for train-
ing (75%), ∼ 32K for validation and ∼ 32K for
test. As in Dixon et al. (2018), we evaluate our ap-
proaches on a synthetic testset madlibs 9, with 89K
examples created using templates of both toxic and
non-toxic phrases that are filled in with a list of the
50 identity terms. Additionally, we evaluate on the
held-out test set. Following previous work (Steed
et al., 2022), we report downstream biases in terms

9https://github.com/conversationai/
unintended-ml-bias-analysis/tree/main/
unintended_ml_bias/eval_datasets

https://github.com/conversationai/unintended-ml-bias-analysis/tree/main/unintended_ml_bias/eval_datasets
https://github.com/conversationai/unintended-ml-bias-analysis/tree/main/unintended_ml_bias/eval_datasets
https://github.com/conversationai/unintended-ml-bias-analysis/tree/main/unintended_ml_bias/eval_datasets


Test Acc ↑ Group FPR (across identities) Group Acc (across identities)
Mean ↓ Spread ↓ Mean ↑ Spread ↓

BERT 95.88 (4.15) 7.31 (1.13) 23.89 (1.66) 91.75 (0.64) 11.17 (0.78)

D-BIAS 96.59 (3.58) 1.81 (1.63) 6.52 (5.21) 93.31 (1.49) 4.24 (1.86)
D-BIAST 94.20 (5.90) 5.42 (1.57) 20.24 (2.92) 88.62 (1.46) 9.69 (1.05)

SENT-K 96.51 (3.53) 3.81 (0.57) 16.35 (0.78) 93.06 (0.67) 7.71 (0.26)

SENT-ST 96.70 (3.31) 5.03 (1.54) 18.92 (3.18) 93.44 (0.33) 9.03 (1.52)

UNIFORM 96.04 (4.06) 7.72 (0.71) 23.82 (1.19) 92.17 (1.19) 11.46 (0.50)

SCRUB 95.80 (4.27) 7.69 (1.01) 24.20 (1.94) 91.59 (1.01) 11.29 (0.87)

Table 2: Debiasing results on WIKI madlibs, in terms of Group FPR and Group Accuracy, averaged over 5
random initializations (variances in paranthesis). D-BIAS outperforms all approaches in terms of FPR (Group FPR
Mean) and achieves an even distribution of FPR (Group FPR Spread) and accuracies (Group Acc Spread) across all
identity groups.

Test Acc ↑ Group FPR (across identities) Group Acc (across identities)
Mean ↓ Spread ↓ Mean ↑ Spread ↓

BERT 98.43 (1.57) 3.55 (0.43) 4.33 (0.69) 90.68 (0.23) 6.41 (0.28)

D-BIAS 98.05 (1.95) 1.69 (0.57) 3.31 (0.90) 89.77 (0.55) 6.61 (0.58)

D-BIAST 98.32 (1.68) 3.52 (0.51) 4.87 (0.78) 90.15 (0.42) 6.59 (0.28)

SENT-K 98.41 (1.59) 3.58 (0.54) 4.43 (0.77) 90.56 (0.51) 6.10 (0.29)
SENT-ST 98.44 (1.57) 3.42 (0.36) 4.37 (0.70) 90.39 (0.42) 6.56 (0.22)

UNIFORM 98.39 (1.61) 4.87 (0.35) 6.07 (0.37) 90.81 (0.50) 6.16 ( 0.39)

SCRUB 98.44 (1.56) 3.44 (0.20) 4.17 (0.23) 90.66 (0.33) 6.38 (0.22)

Table 3: Debiasing results on WIKI held-out testset, in terms of Group FPR and Group Accuracy, for identity
groups with ≥ 10 samples in testset, averaged over 5 random initializations (variances in parenthesis). D-BIAS
outperforms all approaches in terms of FPR (Group FPR Mean and Spread), while achieving similar overall test
accuracy and individual group accuracies.

of differences in FPR, across comments grouped
according to mentions of identity words. A high
FPR implies that the identity group is more likely
to be flagged for associations with toxic content.

In Table 2, we present debiasing results on the
madlibs testset, with means and variances (in
parenthesis) over 5 random initializations. The first
column presents overall test accuracy (higher is bet-
ter). For each run, we compute a) mean group-wise
accuracy/FPR (Group Acc Mean and Group FPR
Mean respectively) across identities and b) standard
deviation of the group-wise accuracy/FPR, which
we denote as the spread. Ideally, we want higher
Group Acc Mean, lower Group FPR Mean, and
lower spread for both accuracy and FPR (since we
do not want the model to exhibit large disparities in
accuracy/FPR across the identity groups). Columns
two to five present these numbers. The first row
presents results with baseline BERT without any
word dropout. The next rows present our proposed

approaches, followed by the other baselines. We do
not compare with R-LACE and INLP since those
target binary bias attributes. We plot the distribu-
tion of group accuracy and group FPR (averaged
over random seeds) in Figure 3.

We observe that BERT fine-tuned on the WIKI
task exhibits significant variations in group accura-
cies and FPRs across the identity groups. The most
glaring examples are the gay and homosexual iden-
tities. Anytime these identity words appear in a
Talk Page comment, the model always predicts
Toxic, irrespective of the context. This corre-
sponds to 100% FPR for both these identity words
(Figure 3) and the the relatively lower (∼ 50%) pre-
diction accuracies (Figure 6). We observe that all
dropout approaches outperform BERT, UNIFORM

and SCRUB.

D-BIAS substantially outperforms BERT with-
out any dropout, for each evaluation metric. First,
it improves model performance in terms of both



Figure 3: Debiasing results on WIKI madlibs testset:
FPR for each identity group, averaged over 5 random
initializations. Red dots show strip plots; corresponding
violin plots are in blue. D-BIAS decreases FPR on gay
and homosexual from ∼ 99.8% (with BERT, for both)
to ∼ 18% and ∼ 30% respectively.

overall test accuracy and the mean group accu-
racies. D-BIAS also decreases the mean group
FPR (averaged across identities and random runs)
from 7.31% to 1.81%. In particular for gay, aver-
age accuracy (over random initializations) remark-
ably increases to 83% (from ∼ 50%) and average
FPR decreases to 38% (from 100%). Among the
other word dropout approaches, SENT-K decreases
Group FPR Mean, Group FPR Spread and Group
Acc Spread the most. However, it does not address
high FPR in case of the outlier identity categories
such as gay and homosexual. SCRUB is largely
ineffective, aligning with the findings in Steed et al.
(2022). UNIFORM is also ineffective, highlighting
the substantial advantage from using bias targeted
word dropout strategies, compared to a uniform
word dropout strategy.

Unlike madlibs, in which, all identities have uni-
form representation by construction, the held-out
test set suffers from heavily skewed representation
across identities (Figure 7). To eliminate noise, we
report debiasing results for identity groups with at
least 10 instances in this test set. In Table 3, we
show that D-BIAS once again, outperforms all ap-
proaches in terms of FPR, while achieving similar
overall test accuracy and group accuracies. In Fig-
ure 4, we highlight prominent reductions in down-
stream biases (FPR), e.g., for homosexual, from
8.2% in BERT to 3.5% with D-BIAS.

Figure 4: Debiasing results on WIKI held-out testset:
FPR for identity group with at least 10 samples in test
set, averaged over 5 random initializations. Red dots
show strip plots; corresponding violin plots are in blue.
On homosexual, D-BIAS decreases FPR from 8.2% in
BERT to 3.5%.

3.4 Analysis of nPMI Results

To better understand the nPMI scores in each
case, we plot nPMI of commonly suspected proxy
words (De-Arteaga et al., 2019) in Figure 5, with
the he/him and she/her groups of pronouns. One
notable observation about the gendered proxies is
that the terms husband and wife have a stronger
association with the opposite gender due to societal
heteronormativity; these identities often appear in
the form of ‘her husband’ and ‘his wife’. Online
biographies often include mentions of the author’s
family/personal life, in addition to occupation-
related content. As a result, family-related words
can easily act as proxies for gender information.
Our nPMI framework scores these proxies rea-
sonably well and, is able to find other gendered
associations as well. For example, words such
as software, computers, technology co-occur
more with biographies of men (vs. yoga for
women).

In case of the WIKI data, we present a list of
the highest scoring nPMI words for a subset of
the identity words, in Table 4. Notably, groups
most likely to be flagged for toxic content, i.e.,
gay, homosexual frequently co-occur with abu-
sive slang or are used in a pejorative sense, leading
the models to associate toxicity with these identity
groups.



Identity Top-Ranking nPMI words

asian afghans, persians, israelis, aryan, culturally, afghanistan, south-east, arabs
african African-American, races, south, Civil, Obama, Africa, black, color, people
hispanic phillipino, phillipinos, Spaniards, Spain, waves, Latin, Europe
indian Bihar, valmiki, maharshi, subcontinent, goverment, Modi, hindi, Indus, singh
buddhist buddhism, Asoka, patronizer, jainism, Guptas, mimansa, deities, edicts, monks
catholic baptist, catholicism, nobility, christians, Pope, resignation, roman
muslim tolerent, islam, divorce-divorce-divorce, jehad, balochistan-pakistan, ummah
jewish humus, tautological, long-bearded, missionary, judaism, hebrew, jesus
gay f******, d***, homophobia, same-gender, sucks, die, racist, lesbian, sexuality
homosexual cross-gendered, masculinized, sexualorientation, transsexuals, abstention
queer gender-binary, heteronormative, unconventional, insane, b****, a**, f***

Table 4: List of top-ranking nPMI words for a subset of the identity groups in the WIKI data. Groups such as
gay and homosexual that are most commonly flagged for toxic content in model predictions, frequently co-occur
with abusive slang or are used in a pejorative sense, leading models to associate toxicity with these identity words.

Figure 5: nPMIs computed on BIOS for common
proxy words, with he/him and she/her groups of pro-
nouns. Our nPMI framework scores common proxies
reasonably well and also finds other gendered associa-
tions in the data, shown in red (for she/her) and green
(for he/him) clusters of highly co-occurring words in
each case.

4 Related Work

Prior work on de-biasing pre-trained language mod-
els largely focus on upstream mitigation of intrinsic
biases (Meade et al., 2022; Kaneko and Bollegala,
2021; Schick et al., 2021). However, recent find-
ings (Goldfarb-Tarrant et al., 2021; Steed et al.,
2022) suggest that debiasing effects from upstream
mitigation may not hold downstream, motivating
the need for interventions focused on the context
of downstream tasks.

(Ravfogel et al., 2022, 2020; Liang et al., 2020)
explore de-biasing contextual representations by
identifying and subtracting away, a linear subspace

from the embeddings space. These approaches aim
to identify one or several sets of linear subspaces
that most accurately describe biased artifacts, such
as gender biases. These approaches work with
task-specific data, by adapting a linear layer on top
of the debiased representations (post fine-tuning,
after a bias subspace is subtracted from the rep-
resentations). However, these approaches largely
focus on binary attributes for bias and can often
be computationally intensive. These can either re-
quire massive text corpora to construct templates
for bias subspace generation (Liang et al., 2020)
or use contrastive learning for debiasing (Cheng
et al., 2021), also relying on massive external text
corpora for creating augmented examples, or re-
quire iterative optimization to identify large sets of
linear subspaces (Ravfogel et al., 2022, 2020)). In
contrast, our approach is relatively straightforward
to implement, does not make linearity assumptions,
and easily extends to multiple identities.

5 Conclusions

In this paper, we show, in the context of two classi-
fication tasks, that eliminating proxies for identity
words, in the fine-tuning data can substantially re-
duce downstream biases. Our findings underscore
the importance of targeted and context-specific de-
biasing approaches, with a focus on attenuating
stereotypical associations in the fine-tuning data.

Limitations

In this section, we outline some of the limitations of
our approach. First, we focus our experiments only



on two downstream tasks: a) toxicity classification
and b) occupation classification. As a result, our
findings may not hold for all tasks, especially in
non-classification tasks, where the information loss
from removing proxies may more strongly impact
performance.

Our results may also not hold for all kinds of
stereotypical associations or demographic/social
identity representations, especially as our method
relies on PMIs to identify proxies based on co-
occurrence statistics. There may be obvious
proxies, for example, that are not based on co-
occurence, but rather substitution for a particular
identity term. PMI calculations also tend to be dom-
inated by sparse co-occurences, so it is important
to appropriately threshold how proxies are selected.
Finally, we identify proxies at the token-level, but
there may be proxies that only become apparent at
larger n-grams.

Furthermore, it is not straightforward to account
for various types of biases arising in different con-
texts. For example, the word gay could be used
to indicate identity information or it can be used
in a pejorative sense. However, our findings are
encouraging and can inspire practitioners to focus
more on the particular statistics and context of their
fine-tuning data.

We perform all of our fine-tuning experiments
with BERT, in order to achieve consistent evalua-
tions with previous work in this space. While our
approach can work with other pre-trained models,
the results may not generalize. However, we are op-
timistic that debiasing effects will continue to hold,
as many of the most commonly used pre-trained
models use similar architectures and pre-training
strategies as BERT.
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Appendix

50 60 70 80 90 100
Group ACC (%)

BERT

Uniform

Scrub

D-Bias

D-BiaSt

Sent-K

Sent-St

Figure 6: Debiasing results on WIKI madlibs testset:
Test accuracy for each identity group, averaged over 5
random initializations. Red dots show the strip plots;
corresponding violin plots are in blue. D-BIAS out-
performs other approaches in achieving higher group
accuracies, and a more equitable distribution of the ac-
curacies across identity groups.

Figure 7: Number of Talk Page Comments with men-
tions of each identity, in the train and test splits of the
WIKI data, demonstrating skewed representation across
identoty groups.

6 Reproducibility Criteria

We fine-tune BERT-base-uncased for 5 fine-tuning
epochs in each experiment, saving checkpoints af-
ter every epoch. We pass the [CLS] token represen-
tation through a binary or multi-class classification
head for toxicity classification and occupation clas-

sification respectively. We choose the best check-
point based on validation set accuracy. We set batch
size to 32 for both training and evaluation. We trim
the input text in each case to a maximum length of
128 tokens. We use Adam optimizer with a learn-
ing rate of 1e-05. Each fine-tuning experiment for
5 epochs (including training, validation and test)
takes a little more than 1 hour for toxicity classifica-
tion and about 3 hours for occupation classification
on an NVIDIA Tesla A100 16 GB GPU.

• WIKI data is available at https:
//github.com/conversationai/
unintended-ml-bias-analysis.

• The madlibs test set is available at
https://github.com/conversationai/
unintended-ml-bias-analysis/blob/
main/archive/unintended_ml_bias/
eval_datasets/bias_madlibs_89k.csv.

• BIOS data is available at: https://github.
com/microsoft/biosbias.

In Table 1, we report results with R-LACE and
INLP from Table 2 in Ravfogel et al. (2022).

https://github.com/conversationai/unintended-ml-bias-analysis
https://github.com/conversationai/unintended-ml-bias-analysis
https://github.com/conversationai/unintended-ml-bias-analysis
https://github.com/conversationai/unintended-ml-bias-analysis/blob/main/archive/unintended_ml_bias/eval_datasets/bias_madlibs_89k.csv
https://github.com/conversationai/unintended-ml-bias-analysis/blob/main/archive/unintended_ml_bias/eval_datasets/bias_madlibs_89k.csv
https://github.com/conversationai/unintended-ml-bias-analysis/blob/main/archive/unintended_ml_bias/eval_datasets/bias_madlibs_89k.csv
https://github.com/conversationai/unintended-ml-bias-analysis/blob/main/archive/unintended_ml_bias/eval_datasets/bias_madlibs_89k.csv
https://github.com/microsoft/biosbias
https://github.com/microsoft/biosbias

